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Abstract

Design optimization of large systems can be attempted through a subproblem strategy. In this strat-

egy, the original problem is divided into a number of smaller problems that are clustered together to ob-

tain a sequence of subproblems. Solution to the large problem is attempted iteratively through repeated

solutions to the modest subproblems. This strategy is applicable to structures and to multidisciplinary

systems. For structures, clustering the substructures generates the sequence of subproblems. For a

multidisciplinary system, individual disciplines, accounting for coupling, can be considered as subprob-

lems. A subproblem, if required, can be further broken down to accommodate subdisciplines. The sub-

problem strategy is being implemented into the NASA design optimization test bed, referred to as

“CometBoards.” Neural network and regression approximators are employed for reanalysis and sensitiv-

ity analysis calculations at the subproblem level. The strategy has been implemented in sequential as

well as parallel computational environments. This strategy, which attempts to alleviate algorithmic and

reanalysis deficiencies, has the potential to become a powerful design tool. However, several issues have

to be addressed before its full potential can be harnessed. This paper illustrates the strategy and addresses

some issues.

Introduction

Convergence difficulty can be encountered when nonlinear mathematical optimization methods are

used to solve large multidisciplinary problems with many design variables and numerous behavior con-

straints. Solution to such problems can be attempted through a subproblem strategy in which the original

problem is replaced by an equivalent sequence of subproblems as shown in figure 1. A subproblem with

a few design variables and a small number of constraints can be solved with available nonlinear pro-

gramming algorithms. Solution to the larger problem can be attempted by repeating solutions to the

sequence of modest optimization subproblems until convergence is achieved for the original problem.

This strategy is applicable to structures and to multidisciplinary systems. For structures, clustering sub-

structures generates the sequence of subproblems. For a multidisciplinary system, individual disciplines,

accounting for coupling, can be considered as subproblems. A subproblem, if required, can be further

broken down to accommodate subdisciplines.

The subproblem strategy is being implemented into the NASA design optimization test bed,

referred to as “CometBoards” (ref. 1). Neural network and regression approximators are employed for

reanalysis and sensitivity analysis calculations at the subproblem level. The strategy is available in

sequential as well as parallel computational environments. This strategy, which attempts to alleviate

algorithmic and reanalysis deficiencies, has the potential to become a powerful design tool. However,
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several issues have to be addressed before its full potential can be harnessed. This paper addresses and

illustrates issues relating to analysis approximations and convergence to local solutions. The paper is

presented in these subsequent sections: design test bed CometBoards; subproblem solution strategy;

analysis approximation; illustrative example; convergence to local solutions; and conclusions.

Design Test Bed CometBoards

The test bed CometBoards, an acronym meaning comparative evaluation test bed of optimization and

analysis routines for the design of structures, was originally developed to compare different nonlinear

mathematical programming algorithms and different analysis methods for structural design applications.

The test bed was subsequently expanded for multidisciplinary design problems. Its modular organization

is shown in figure 2. The CometBoards system first formulates the design as a nonlinear mathematical

programming problem, reading information specified in input data files that include initial design with

upper and lower bounds, limitation on behavior constraints, definition of subproblems, cascade strategy

(ref. 2), and so forth. It then solves the resulting problem by executing the required segments of the

program.

Problem formulation can use several types of analysis tools available in its analyzer module. The

analyzers available include LE_HOST (ref. 3) and COSMIC/NASTRAN (ref. 4) for structural analysis,

FLOPS (flight optimization system for aircraft analysis, ref. 5), NEPP (NASA Engine Performance Pro-

gram for air-breathing engine cycle analysis, ref. 6), and others. Alternatively, a user-specified analyzer,

which can be integrated through a soft coupling strategy, can be used. The solution to the optimization

problem can use any one of a dozen optimization algorithms (ref. 7) available in CometBoards or can use

a cascade strategy.

The cascade strategy is created by combining more than one optimizer in a specified sequence with

pseudorandom perturbation between two optimizers. An approximation module with neural network and

regression methods available in CometBoards can be used to reduce the number of calculations in optimi-

zation (refs. 8 and 9). The present version of CometBoards can accommodate several different disciplines,

each of which can be further divided into subproblems. Thus, the CometBoards design tool can optimize

a system that can be defined in terms of about 100 optimization subproblems. Alternatively, the Comet-

Boards test bed can be used to examine the optimality of a small portion of a larger design problem by

appropriate input data specification.

Figure 1.—Subproblem coupling.
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Subproblem Solution Strategy

Subproblem solution strategies for sequential and parallel algorithms are depicted in the flow dia-

grams of figure 3. The flow diagrams each have two loops. The inner loop (i = 1, N) is associated with

the optimization of N subproblems. In the parallel computational environment the subproblems are dis-

tributed to different processors. The outer loop repeats the solution of the N subproblems several times

(referred to as “cycles”) until convergence. In the sequential computational environment the subproblems

are optimized in sequence, and the design variables for the entire structure (also referred to as “global

variables”) are updated as soon as a solution to any single subproblem is available. In parallel computa-

tion, wherein subproblems are assigned to different processors, the global design variables can be updated

only after the solutions have been completed for all the subproblems. In other words, the sequential algo-

rithm, which benefits from intermediate improvement to the global design variables, can converge faster

than the parallel algorithm because updating the global variables in this scheme cannot proceed until a full

subproblem optimization cycle has been completed.

Engine
optimization

Multidisciplinary
optimization

strategy

Aircraft
optimization

Neural networks
and regression
approximations

Analyzers

System interface:
UNIX operating system

Solution:

Data files

Substructure
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Figure 2.—Organization of CometBoards test bed.
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Analysis Approximation

Approximation is employed to simplify analysis and reduce distortion of the design space. The salient

features of analysis approximation are as follows:

1. Analysis approximation is carried out for each subproblem prior to its solution.

2. Objective function and the constraints are separately approximated. Provision exists to

approximate a component of a constraint (such as the stress σ instead of the stress constraint

{g = |σ/σ0| – 1 ≤ 0}). The approximation can be carried out either for the large number of raw

constraints or after the constraint formulation.

3. The approximation provides the value of the function and its gradient with respect to the design

variables.

4. Both the linear regression method and neural networks can be used for approximations. An

approximate analyzer at a subproblem solution stage is formulated in the following steps:

(a) Select the basis functions.

(b) Establish a benchmark solution around which input-output pairs are chosen.

(c) Generate good-quality input-output pairs for objective function and constraints or their com-

ponents.

(d) Train the approximate methods with validation. This process provides the constraints and

their sensitivities.

No
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Optimize
for x i
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Define N subproblems
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Stop
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Figure 3.—Substructure solution strategy.
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(e) Use the approximators for the subproblem solution.

(f) Repeat steps (b–d) prior to each subproblem solution. Step (a) has to be performed once for

the entire optimization process.

Linear Regression Analysis

The linear regression method available in CometBoards approximates a function by using the follow-

ing basis functions: (1) a cubic polynomial, (2) a quadratic polynomial, (3) a linear polynomial in recipro-

cal variables, (4) a quadratic polynomial in reciprocal variables, and (5) combinations of these functions.

The regression coefficients are determined by using the linear least-squares method in the LAPACK

library (DGELS routine, ref. 10). The gradient matrix of the regression function with respect to the design

variables is obtained in closed form. Once the regression coefficients have been obtained, the reanalysis

and the sensitivity analyses require trivial computational effort.

Neural Network Approximations

The neural network approximation available in CometBoards is referred to as “Cometnet” (ref. 8).

It approximates the function with a set of kernel functions. Cometnet permits approximations with linear

and reciprocal polynomials, as well as with Cauchy and Gaussian radial functions. A singular-value

decomposition algorithm is used to calculate the weight factors in the approximate function during net-

work training. A clustering algorithm in conjunction with a competing complexity-based regularization

algorithm is used to select suitable parameters for defining the radial functions.

Benchmark Solution and Input-Output Training Pairs

The initial design is considered as the benchmark solution for generating the input-output pairs for the

first subproblem. For subsequent subproblems the benchmark solution is updated by using optimization

solutions available at that iteration stage. For generating the input-output pairs to train the approximate

methods, a set of design points is selected at random within their upper and lower bounds by using a

design-of-experiment strategy. The number of input-output pairs and the bounds of the design variables

are changed as the optimization iterations progress.

Training the Approximate Methods

Both the regression and neural network methods are trained for a set of good-quality input-output

training pairs. The basis functions are made as identical as possible between the methods. Selection of

similar basis functions allows a systematic comparison of the two approximation concepts. Consider, for

example, substructure 1 of the trussed-ring problem subsequently described in this paper. The basis func-

tions used in the regression method for this substructure consist of linear and quadratic polynomials in

design variables and linear polynomials in reciprocal variables. For the substructure with eight design

variables the basis function becomes a polynomial with 53 coefficients. Likewise, for the same substruc-

ture the neural network scheme has 53 coefficients. In other words, the number of coefficients in the

numerical approximations is the same for both the neural network and regression methods.



NASA/TM—2003-210714   6

Illustrative Example

The subproblem solution strategy is illustrated by considering the design of a modest trussed steel

ring shown in figure 4, as an example. The ring is made of 60 bars with inner and outer diameters of

180 and 200 in., respectively. It is fully restrained at node 10 and free to move only along the y direction

at the diametrically opposite node 16. The ring is subjected to two load conditions. The first load condi-

tion consists of a 40-kip compression along its horizontal diameter, applied at nodes 1 and 7. The second

40-kip load, applied at node 4, induces compression along the vertical diameter. For the purpose of design

the 60 bar areas of the truss are linked to obtain 16 independent design variables. Sixty stress constraints

(with a yield strength of 20 ksi), for each load condition, are grouped to obtain 16 constraints. The distor-

tions of the ring along the horizontal and vertical diameters are controlled through 4-in. displacement

limitations specified at nodes 1, 4, and 7 for each load condition. The ring is designed under problem

1 and problem 2. In problem 1 the optimum weight of the ring is obtained for stress and displacement

constraints. Problem 2 includes all the constraints of problem 1 and a frequency limitation at 14 Hz.

Subproblem solution is obtained in the following steps.

Figure 4.—Sixty-bar trussed ring.
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Step 1: Substructure Model

A substructure model for the ring is obtained by dividing it into four substructures. The substructures

are described in table 1. Take, for example, substructure 1. It encompasses 12 bars that form the outer ring

(see fig. 4). The 12 bar areas are linked to obtain four design variables. Likewise, the other three substruc-

tures are defined in table 1.

TABLE 1.—DESIGN VARIABLES AND SUBSTRUCTURES OF RING PROBLEM
Design

variables
Area of bars Substructures Remarks

  1
  2
  3
  4

  5
  6
  7
  8

  9
10
11
12

13
14
15
16

1,2,3
4,5,6
7,8,9
10,11,12

13,14,15
16,17,18
19,20,21
22,23,24

25,26,27,37,38,39
28,29,30,40,41,42
31,31,33,43,44,45
34,35,36,46,47,48

49,50,51
52,53,54
55,56,57
58,59,60

I
I
I
I

II
II
II
II

III
III
III
III

IV
IV
IV
IV

Outer ring northeast (see fig. 4)
Outer ring northwest
Outer ring southwest
Outer ring southeast

Inner ring northeast
Inner ring northwest
Inner ring southwest
Inner ring southeast

Crossbars northeast
Crossbars northwest
Crossbars southwest
Crossbars southeast

Radial bars east and northeast
Radial bars north and northwest
Radial bars west and southwest
Radial bars south and southeast

Step 2: Definition of Subproblems

The four substructures are clustered together to obtain four subproblems, as defined in table 2. For

example, subproblem 1 is obtained by combining substructures III and I. It has eight design variables and

eight stress and six displacement constraints for problem 1. One frequency constraint is added to

obtain problem 2. Other subproblems are defined in table 2.

  TABLE 2.—DEFINITION OF SUBPROBLEMS FOR RING PROBLEM
Subproblems Substructures Remarks

1 I and III Outer ring and crossbars:
   8 design variables; 8 stress and
   6 displacement (and 1 frequency) constraints

2 II and IV Inner ring and radial bars:   
   8 design variables; 8 stress and
   6 displacement (and 1 frequency) constraints

3 II and III Inner ring and crossbars:   
   8 design variables; 8 stress and
   6 displacement (and 1 frequency) constraints

4 I and IV Outer ring and radial bars:   
   8 design variables; 8 stress and
   6 displacement (and 1 frequency) constraints
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Step 3:  Solution of Subproblems

The four subproblems are solved in a sequence, one after the other. Solution to the first subproblem

is initiated from the specified initial design. For solution of subsequent problems the initial design is up-

dated by using available subproblem solutions at that solution stage. Approximate analysis and sensitivity

analysis models with neural network and regression methods are developed at the beginning of each sub-

problem design. Solution of all four subproblems represents one cycle. The cycling is repeated until satis-

factory solution is obtained for the large problem.

Results for Ring Problem

Solution to each ring problem has been obtained for nine different cases. Summaries of results for

the two problems are depicted in tables 3 and 4. The mean and the standard deviation are given for the

design variables instead of their individual values. The nine test cases considered are described here.

Case 1.—The ring is designed as a single problem without the use of subproblem strategy or the ap-

proximation concepts. COSMIC/NASTRAN is the analysis tool. A sequential quadratic programming

(SQP) algorithm is the optimizer. This design is considered the benchmark solution and all other results

are compared with it. This solution was verified through a three-optimizer cascade strategy (method of

feasible directions (FD), followed by SQP and the same FD). The cascade results confirmed the bench-

mark solution. The method of feasible directions produced a 0.5 percent error in the weight and a 0.9 per-

cent mean-square error for the design variables. Mild infeasibility was noticed for a few constraints.

TABLE 3.—SOLUTIONS FOR RING PROBLEM WITH STRESS AND DISPLACEMENT CONSTRAINTS
(PROBLEM 1)

Test
case

Description Optimum
weight,

lb

Design variables,
 sq. in.

Number of
active

constraints

Number of
cycles

(number of
subproblems)

CPU time
to

solution,
 min

Mean Standard
deviation

1 Single problem;
COSMIC/NASTRAN analyzer;
SQP optimizer (benchmark solution)

799.9 3.15 0.81 4 stress,
1 disp.

1 (1) 42.0

2 Four mutually exclusive
subproblems; COSMIC/NASTRAN
and SQP

1487.8 4.64 3.4 Failed

3 Four coupled subproblems;
COSMIC/NASTRAN and SQP

799.9 3.15 0.81 4 stress,
1 disp.

4 (16) 81.9

4 Four coupled subproblems;
regression analyzer and SQP;
constraint formulation active both at
training and design stages

800.1 3.15 0.81 3 stress,
1 disp.

(a)

3 (13)    ------

5 Four coupled subproblems;
regression analyzer and SQP;
constraint formulation passive at
both training and design stages

800.1 3.16 0.82 4 stress,
1 disp.

3 (13) 169.4

6 Four coupled subproblems;
regression analyzer and SQP;
constraint formulation passive at
training but active at design stage

800.1 3.16 0.82 4 stress,
1 disp.

3 (13) 170.5

7 Same as case 4, using neural
network analyzer

800.1 3.15 0.81 4 stress,
1 disp.

3 (13)    ------

8 Same as case 5, using neural
network analyzer

800.6 3.16 0.81 4 stress,
1 disp

3 (12)    ------

9 Same as case 6, using neural
network analyzer

800.1 3.16 0.82 4 stress,
1 disp.

3 (13) 197.6

aInfeasibility at a small fraction of 1 percent.
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TABLE 4.—SOLUTIONS FOR RING PROBLEM WITH STRESS, DISPLACEMENT, AND FREQUENCY CONSTRAINTS
(PROBLEM 2)

Test
case

Description Optimum
weight,

lb

Design variables,
 sq. in.

Number of
active

constraints

Number of
cycles

(number of
subproblems)

CPU
time to

solution,
 min

Mean Standard
deviation

1 Single problem;
COSMIC/NASTRAN analyzer;
SQP optimizer (benchmark solution)

900.0 3.52 1.08 8 stress,
1 frequency

1 (1) 80.5

2 Four mutually exclusive
subproblems; COSMIC/NASTRAN
and SQP

905.9 3.54 1.29 5 stress,
1 frequency

2 (8) 347.6

3 Four coupled subproblems;
COSMIC/NASTRAN and SQP

899.9 3.50 1.09 7 stress,
1 frequency

(a)

17 (68) 203.2

4 Four coupled subproblems;
regression analyzer and SQP;
constraint formulation active both at
training and design stages

859.8 Infeasible at 55 percent and underdesign; failed

5 Four coupled subproblems;
regression analyzer and SQP;
constraint formulation passive at
both training and design stages

900.8 3.51 1.07 8 stress,
1 frequency

(a)

3 (13) 288.9

6 Four coupled subproblems;
regression analyzer and SQP;
constraint formulation passive at
training but active at design stage

900.8 3.51 1.07 8 stress,
1 frequency

(a)

3 (13) 289.6

7 Same as case 4, using neural
network analyzer

859.8 Failed

8 Same as case 5, using neural
network analyzer

900.6 3.51 1.07 8 stress,
1 frequency

(a)

3 (13) 319.5

9 Same as  case 6, using neural
network analyzer

900.8 3.51 1.07 8 stress,
1 frequency

(a)

3 (13) 320.9

aInfeasibility at a small fraction of 1 percent.

Case 2.—The ring problem is solved by using the subproblem strategy and neglecting substructure

coupling. The COSMIC/NASTRAN and SQP algorithms were used as the analysis and design tools,

respectively.

Case 3.—This case is identical to case 2, but substructure coupling is included.

Case 4.—The ring problem is solved by using four coupled subproblems. Analysis is approximated

by a linear regression method, and the SQP algorithm is used. Sixteen grouped stress constraints, the

displacement constraints, and the weight are approximated.

Case 5.—Case 5 is the same as case 4, but approximation is carried out for all 120 stress constraints.

All 120 stress constraints are used during design optimization.

Case 6.—Case 6 is the same as case 5, but the 16 grouped stress constraints are used during design

optimization.

Case 7.—Case 7 is the same as case 4, but linear regression is replaced by neural network

approximation.

Case 8.—Case 8 is the same as case 5, but neural network approximation replaces the linear

regression method.

Case 9.—Case 9 is the same as case 6, but linear regression is replaced by neural network

approximation.
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From the nine solution cases of problem 1 (see table 3) we observe the following:

1. The benchmark solution has an optimum weight of 800 lb. There are a total of five active

constraints: four stress and one displacement. The mean value of the 16 design variables is

3.15 square in. with a standard deviation of 0.81 square in.

2. Out of the nine cases only case 2 (which excluded coupling between the substructures) failed

to converge to the benchmark solution. The other eight cases produced acceptable solutions with

minor variations.

3. Typically, a subproblem strategy required three design cycles corresponding to 13 subproblem

solutions. Subproblem solution strategy is numerically more expensive than regular optimization.

With the COSMIC/NASTRAN analyzer the subproblem strategy is twice as expensive as the

regular optimization. The regression and neural network approximators increase the burden by

four and five times, respectively. The generation of the approximate models consumes the bulk

of calculations.

Likewise from the nine solution cases of problem 2 (which included a frequency constraint;

see table 4) we observe the following:

4. This benchmark solution has an optimum weight of 900 lb. There are a total of nine active con-

straints: eight stress and one frequency. No displacement constraint is active. The mean value of

the 16 design variables is 3.52 square in. with a standard deviation of 1.08 square in.

5. Case 4 and case 7 failed to converge. Both cases trained a reduced number of stress constraints.

Case 2, which failed earlier, was successful when a frequency constraint was included. Some

variation is noticed in the number of active constraints for the nine cases.

6. The inclusion of a frequency constraint increased the computational burden by a factor of 2 with

regular analyzers and by a factor of 1.5 with the approximators. Regular optimization with and

without the frequency constraint required 80.5 and 42.0 CPU minutes, respectively. Likewise,

the inclusion of the frequency (see case 5) increased solution time from 170 to 289 CPU minutes

for the regression model. The neural network method for the same case 5 was 10 percent more

expensive than the regression method. A typical subproblem strategy required three design

cycles that correspond to 13 subproblem solutions.

Convergence to Local Solutions

The subproblem strategy had a tendency to converge to local solutions different from that obtained

when regular optimization is used. It was also observed that the variation in the minimum weight between

the solutions was small, less than 1 percent. This mild variation in weight is within the numerical accu-

racy of the algorithms. In other words, the minimum weight remained the same for the subproblem and

regular optimization strategies. However, there was substantial variation in the design variables.

The optimum depth profiles for a beam obtained for different combinations of behavior constraints

and two solution methods are depicted in figure 5. The depth of the beam varied by about 10 to 15 percent

between the two solution methods. The beam profile is more uniform for regular optimization than for

subproblem optimization. Subproblem and regular solutions produced the same weight and the same set

of active constraints.
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Figure 5.—Different optimum depth profiles for beam obtained with regular and substructure strategies.
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Optimum depth along length of cylinder, in.

Figure 6.—Optimum depth profile for cylindrical shell with regular and substructure strategies for stress and
   displacement constraints.
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The optimum depth profiles for a cylindrical shell obtained by using regular and subproblem strate-

gies are depicted in figure 6. The profile generated from regular optimization is more uniform than that

generated from substructure optimization. The optimum weights were 1161.95 and 1154.1 lb for the

regular and substructure strategies, respectively. The difference of 0.676 percent can be considered

negligible because of the complexity of the problem. The depth differed substantially between the two

solutions. At the crown the optimum depths of 1.322 and 2.471 in. varied by 53 percent. At optimum the

regular optimization and substructure strategies produced a different number of active constraints.

Conclusions

This study of subproblem solution strategy has led to the following conclusions:

1. Subproblem solution strategy has the potential to solve large problems. However, an adequate

amount of coupling is required for a successful subproblem solution.

2. The subproblem strategy can be numerically more expensive than regular optimization.

3. Both neural network and regression methods provide adequate analysis models and perform at

about the same level of efficiency.

4. Subproblem solution may produce an irregular design in contrast to regular optimization. Allevia-

tion of this deficiency is important to the success of the strategy.
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5. The training of the raw constraints instead of the formulated constraints requires additional

research.

6. A larger size and fewer subproblems can improve the efficiency of the strategy.
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